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Abstract

An overlapped type of local neural network is proposed to improve accuracy of the heat transfer coefficient estima-

tion of the supercritical carbon dioxide. The idea of this work is to use the network to estimate the heat transfer coef-

ficient for which there is no accurate correlation model due to the complexity of the thermo-physical properties involved

around the critical region. Unlike the global approximation network (e.g. backpropagation network) and the local

approximation network (e.g. the radial basis function network), the proposed network allows us to match the quick

changes in the near-critical local region where the rate of heat transfer is significantly increased and to construct the

global smooth perspective far away from that local region. Based on the experimental data for carbon dioxide flowing

inside a heated tube at the supercritical condition, the proposed network significantly outperformed some the conven-

tional correlation method and the traditional network models.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Supercritical carbon dioxide is characterized by high

solvent power, high diffusivity, low viscosity, low surface

tension, and adjustable physical properties by pressure

and temperature. It is widely and maturely applied to

natural products extraction due to its non-toxicity,

non-residual, and non-combustibility. In an extraction

plant, liquefied CO2 from storage tank is pressurized

and pre-heated under the supercritical condition to ex-

tract active compounds from the extractor which is

pre-loaded with raw materials and depressurized to pre-
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cipitate the dissolved compounds in a separator. In the

separator, the depressurized CO2 need to be heated to

prevent CO2 liquefaction and to reduce the viscosity of

the precipitated solutes. The depressurized gaseous

CO2 is liquefied again and recovered to a storage

tanks[1–4]. Obviously the extraction plant contains a

pre-heater operated at high pressure, a heater operated

at low pressure, and a liquefier operated at low pressure.

Usually the area needed for the heater and the liquefier

is much bigger than that of the pre-heater. Recent re-

search on the heat transfer of supercritical CO2 has been

focused on the development of a transcritical cycle for a

conditioner [5]. Since the heat transfer coefficients to

supercritical CO2 can significantly reach high value, it

is an ideal substituted refrigerant for automobile air

conditioners.
ed.
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Nomenclature

a linear coefficients vector of MRBFN

a0 constant of MRBFN

ci center of the neuron i

�cp the averaged isobaric capacity

Ec Eckert number

K number of training patterns

_m mass flow rate

NPT number of points

Nu Nusselt number

Pr Prandtl number

_q heat flux

qj orthogonal column i extracted by the factor-

ization of regressor matrix R

ri regressor vector i, of regressor matrix R

R regressor matrix of MRBFN

Re Reynolds number

S number of neurons

[SSR]j variation of the measured quality in the

direction qi
T temperature

wi coefficient of the neuron i of RBFN

x input vector, 2Rn

y output pattern, 2R
ŷ predicted output, 2R

Greek symbols

a heat transfer coefficient

q density

ui radial basis function i

r2i is variance of the radial basis function i

C matrix from QR decomposition

$ gradient operator

X unknown parameter vector, which consists

of the center and variance of each neuron

of MRBFN

Subscripts

b at bulk

r reduced

w at wall
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In order to design a highly efficient heat transfer sys-

tem, the estimation of convective heat transfer for super-

critical carbon dioxide is strongly needed. So far many

empirical equations are proposed to calculate the heat

transfer coefficient. When the fluid is close to its critical

point, the modification of the empirical equation is also

proposed [5,6]. Traditionally, dimensional analysis is

often used to reduce the number of variables to the inter-

nal and external Nusselt numbers as functions of the

corresponding Reynolds and Prandtl numbers. Then

such correlations could be estimated from experimental

measurements. In practice, property variations, espe-

cially the variation of liquid viscosity, make correlation

obtained highly dependent on fluid temperatures. Proce-

dures that take this variation into account become very

complex and potentially lose generality. The heat trans-

fer system is complex due to the physical phenomena

presented in the transfer of heat and the larger number

of variables involved in its operation. This increases

the difficulty of solving the governing equation based

on a first-principal approach. Most of the models that

are available rely on assumptions and simplifications

that disagree at the real conditions of operation.

The neural network technique offer an alterative ap-

proach to the problem information compression for the

heat exchanger. It is a method that is often used for pre-

dicting the response of a physical system that cannot be

easily modeled mathematically. Neural networks have

demonstrated the strong capability of learning non-lin-

ear and complex relationships between process variables

without any prior knowledge of system behaviors. Since
the highly complex behavior of heat transfer systems in

the near critical region is presently ahead of the theoreti-

cal method from a fundamental physical standpoint, the

network is derived from the data presented instead of

the exact form of the analytical function on which the

model should be built. By training the net to reduce

the difference between the neural network output and

the actual experimental values, each neural network rep-

resents a non-linear or complex behavior for the output

that it learned. The neural network is ideally suited for

the heat transfer process problem mainly because of

the derivation from the data presented instead of the

exact form of the heat transfer on which the model

should be built. Many researchers have focused on the

neural network approach to heat transfer modeling. In

recent years, the number of applications of neural net-

works to heat transfer process has increased dramati-

cally. Research shows that neural network models

exhibit superior predictive abilities over traditional sta-

tistical methods and require less experimental training

data. Literature that deals with the use of neural net-

works to the heat transfer problems includes: the predic-

tion of the heat transfer coefficient [7], Nusselt number

[8,9], heat transfer rates [10,11], the simulation of a

liquid-saturated steam heat exchanger [12] and so on.

Basically, a neural-network approach can save time

and money. It can learn and extract the process behavior

from the past operating information. It can be used as a

model for process optimization and design. In the past

research, the backpropagation neural network (BPN)

[13] is often used. However, a large amount of data
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points which should cover the whole design region are

needed for training a healthy neural network model. It

is not applicable to process design since only the data lo-

cated at some local design regions is critical to building

the neural network model. The structure of the locally

tuned and overlapping receptive field has been widely

applied in the region of the cerebral cortex, the visual

cortex, etc. Drawing on knowledge in biological recep-

tive fields, the radial basis function network (RBFN)

[14] with the property of the local function is proposed

to eliminate unnecessary and extrapolation errors. The

non-linear mapping is used to transfer the inputs into

the intermediate outputs covered at some local regions.

Due to the local structure, the curse problem, which re-

fers to the exponential increase in the number of hidden

neurons with the increase of the input space dimensions,

still exists.

In this paper, a neural network with the overlap

structure, the modified RBFN (MRBFN), is proposed

to improve the modeling the heat transfer coefficient

for supercritical CO2 in the heat exchanger system. It

has not only the valid smooth approximation in the de-

sign space but also the fine and variation approximation

in several local neighborhoods. It provides a systematic

modeling procedure based on the input–output data

with the desired accuracy. The comparisons with the

conventional correlation method and the model based

on BPN and RBFN are also made.
2. Experimental data

Experiments from Olson and Allen [15] were con-

ducted with the counterflow heat exchanger. Six sets of

experiments were obtained from a series of tests of the

fixed carbon dioxide pressure at the different values.

Within each set, carbon dioxide flow rate varied, as

was the amount of the heat transferred from the water

to the carbon dioxide. The mass flow rate, inlet temper-

ature, outlet temperature, inlet pressure and the differen-

tial pressure for both carbon dioxide and water sides

were measured. A total of 1115 data were collected to

use as the training and validation sets.
RBFN
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Output
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y

Fig. 1. RBFN network.
3. Neural networks: Global and local approximation

Assume that a set of training patterns is given, that is,

a set of input and desired output pairs

T ¼ fðxk ; ykÞ : xk 2 Rn; yk 2 R; k ¼ 1; 2; . . . ;Kg ð1Þ

The data vectors xk are referred to as input patterns and

yk output patterns. The goal of training the network is to

adjust the parameters of the network to minimize the

objective function which is usually the square error be-

tween the predicted output of the network and the
desired output. When it comes to train the net, the

back-propagation (gradient descent) algorithm is often

used. Once trained, each neural network represents a

non-linear or complex function for the output that it

learned.

Despite all the mathematical theorems that have been

advanced to support BPN as an approximation scheme,

there are some problems in the practical considerations:

(1) The learning convergence is not fast enough. Due to

the global activation function residing on each network

neuron, the neuron in the network typically influences

the output over a large range of input values. (2) The

hyperplane activation functions (such as the tangent

function and the logistic function) are often used in

BPN. When they have an activation very close to zero

or to one, the weight adjustments would be close to zero.

In this situation, the learning algorithm of BPN becomes

paralyzed. (3) The BPN has larger extrapolation error.

Because BPN is done without considering the availabil-

ity or density of training data in a given range of inputs,

it may lead to large extrapolation error without warning.

(4) The design procedures or guidelines on how to build

the structure of ANN are poorly developed. They

mostly rely on some kinds of trial and error procedures.

RBFN is an alternate model to BPN for process iden-

tification. It refers to a neural network using the radial

basis function rather than the hyperplane function.

The radial basis function is a local and multidimensional

function. It employs a distance term to divide an input

space with localized input field. RBFN shown in Fig. 1

consists of three layers: an input layer, a hidden layer

and an output layer. It can be mathematically defined as:

ŷðxÞ ¼
XS

i¼1

wiuiðkx� cikÞ ð2Þ

where S is the number of neurons, u is the basis func-

tion, ui ¼ exp½� kx�cik2
2r2i

�, ci serves as the center of the

basis function i, r2
i is variance of the basis function i, ŷ

is the predicted output, and wi is referred to the radial

weighting coefficients.

Due to the local nature of the activation function,

RBFN minimizes the problems of long training time

and slow convergence. It still suffers from some short-

comings. (1) The local nature of RBF may result in
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the exponential increase in the number of hidden neu-

rons with the increase of the input space dimensions

[16]. (2) The operation regions of any two RBFs may

not overlap. As a result, if a test input falls outside of

the convex sets, the response of RBF would be close

to zero, yielding incorrect output. To lessen this prob-

lem, some researchers have tried to use regularization

theory [17] whose regularization term can compromise

between the error of approximation and the degree of

smoothness of an unknown process.
(2,3)
3

Neuron 3

Data
distribution

2x

1x

Fig. 2. The data distribution for radial base functions at

different levels of resolutions, where the shaded regions repre-

sent the possible neuron candidates.
4. The overlapped type of local neural networks

As we discussed in the previous section, the structures

of the neural network can be classified as global and

local approximations. The global approximation (like

BPN) is valid in the whole region defined by side con-

straints, but it cannot easily match the occasionally

quick changes in some of the regions as in the near-crit-

ical region where the rate of heat transfer is significantly

increased than that far away from the region. On the

other hand, local approximation (like RBFN) is valid

in the vicinity of the points at which they are generated.

They can help reducing the complexity of the problem at

some local region. Due to their local characteristics, they

lack a global perspective and convergence to a smooth

model. In this paper, a modified RBFN (MRBFN) will

be developed to improve the ability of the prediction of

RBFN. Based on the data distribution, the proposed

network can properly patch the essential features in dif-

ferent locations so that a systematic neural network

design procedure can be conducted.

ŷðxÞ ¼
XS

i¼1

wiuiðkx� cikÞ þ aTxþ a0 ð3Þ

Eq. (3) is a modified version of the traditional RBFN. It

consists of two parts—a traditional RBFN to identify

the non-linear characteristics of the process; and a linear

model to capture linear characteristics of the batch pro-

cess. Thus, the vector a contains the linear coefficients

and a0 is a constant. Three steps for training based on

the previously developed work are used here [18]. The

training procedures are briefly outlined as follows:

(1) Selecting neuron candidates. Neuron candidates

are selected based on the distribution density of the in-

put training data. The distribution of the input training

data can be viewed at different levels of resolutions. A

neuron is assigned to the center location of each resolu-

tion cell that covers the training data. For brief explana-

tion, the resolution cells in the two-dimensional space

are illustrated in Fig. 2. The ‘‘Level’’ axis represents dif-

ferent levels of resolution. The binary partitions are se-

lected for efficient computation and easy explanation.

As shown in Fig. 2, Level 1 stretches the entire operating
space; thus, it creates a coarse resolution to support all

data; i.e. Neuron 1 would cover cell (1,1). Contrarily,

the resolution becomes finer by going downward

through the levels. Therefore, only a limited number of

data are covered in the finer resolution of the cell. The

input data (gray points and black points) distributed

at Cell (1,2) of Level 2 would be covered by Neuron

2, and the input data (black points) at Cell (2,3) of Level

3, by Neuron 3. Based on the desired data density, the

active neurons are selected as the candidates. As the can-

didates are found, the corresponding center (ci) and the

width (ri) values are determined by the location of the

active cell.

(2) Purifying neurons. Not all of the neuron candi-

dates have a strong impact on the desired output. They

should be refined using the output training data. The

classical Gram–Schmidt algorithm (CGS) [19,20] is used

as a purifying scheme to retain the most contributive

neurons and remove the least contributive ones. To

identify RBFN model, substituting each data pair into

Eq. (3) yields a set of K equations. These equations

can be written in a concise matrix form as

y ¼ Rhþ e ð4Þ

where

J ¼ y1 y2 � � � yK½ �T

e ¼ e1 e2 � � � eK½ �T

h ¼ w1 w2 � � � wS a1 � � � aN a0½ �T

R ¼ r1 � � � rS rSþ1 � � � rSþN rSþNþ1½ �T

ð5Þ
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and

ri ¼

uiðkx1 � cikÞ uiðkx2 � cikÞ � � � uiðkxK � cikÞ½ �T

16 i6 S

xi�ðSþ1Þ;1 xi�ðSþ1Þ;2 � � � xi�ðSþ1Þ;K
� �T
Sþ 16 i6 SþN

1 i¼ SþN þ 1

8>>>>>><
>>>>>>:

ð6Þ

In Eq. (6), xi,k is the input variable i of the pattern k, 1 is

a column vector consisted of K 1�s. The variable e repre-
sents the residuals or errors of the approximation prob-

lem defined by the training data. The goal of the

approximation is to minimize the sum of square errors.

XK
k¼1

e2p ¼ eTe ð7Þ

Generally the columns of [r1 � � � rS rS+1 � � � rS+N rS+N+1]

are not mutually orthogonal. The regressor matrix R can

be factored into a product using an unnormalized QR

decomposition, R = QC,

y ¼ Qgþ e ð8Þ

and the vector g = Ch can be determined by the least

squares method

g ¼ ðQTQÞ�1
QTy ð9Þ

where Q=[q1 q2 � � � qS+N+1]. Because the columns of Q

are orthogonal, Eq. (9) becomes

gi ¼
qTi y

ðqTi qiÞ
i ¼ 1; 2; . . . ; S þ N þ 1 ð10Þ

and g = [g1 g2 � � � gS+N+1]. Under the assumption that e

is white noise, Eq. (8) yields

yTy ¼
XSþNþ1

j¼1

g2jq
T
j qj þ eTe ð11Þ

Define ½SSR�j ¼ g2jq
T
j qj. This term, sum-square-regres-

sion, is used to explain the variation of Y expanded in

direction qi, which corresponds to one column of the

matrix R. The most important neuron or linear term

that maximizes [SSR]j should be selected and the corre-

sponding weight coefficient of each regressor (rj) is also

computed (wi, or ai). Therefore, by projecting the output

training data onto the neurons, the projections may be

dense on some neuron candidates and sparse on the oth-

ers. Those neurons responding to a few or no data from

the output space viewpoint are considered redundant

and they should be removed.

(3) Optimizing the neural parameters. The refined net-

work can be made to be even closer to the system model

using a gradient search algorithm for optimization.

Newton�s method is used to minimize the objective

function:
MðXqÞ ¼
XK
k¼1

ðŷðxkÞ � ykÞ
2 ð12Þ

and

Xqþ1 ¼ Xq � k½HðXqÞ��1rMðXqÞ ð13Þ

where Xq = [{hi},{ri}], [H(Xq)]
�1 is the inverse of

Hessian matrix of M(Xq); $M(Xq) contains the gradient

vectors, oM/ozi, oM/or i, and k is the step size.

The MRBFN modeling procedures of the heat trans-

fer coefficients of supercritical CO2 are summarized as

follows:

(I) Select the physical variables (x) that significantly

affect the heat transfer coefficients (y). The funda-

mental physical equations and the transport prop-

erty equations in the conventional heat transfer

correlation can give the possible selected vari-

ables. This part is further explained in the next

section.

(II) Initiate the neural network structure, including

(1) Selecting the candidate neurons based on the

binary partition method to find out the loca-

tions of the neurons that cover the minimum

required data density.

(2) Purifying the redundant neurons that have no

significant contribution to the desired values

of the heat transfer coefficients. The removing

procedures using the Gram–Schmidit ortho-

gonalization method are shown as follows:

Step 1. k = 1,1 6 i 6 S + N

q
ðiÞ
1 ¼ ri

gðiÞ1 ¼ ðqðiÞ1 ÞTJ
ðqðiÞ1 ÞTqðiÞ1

½SSR�ðiÞ1 ¼ ðgðiÞ1 Þ2ðqðiÞ1 ÞTqðiÞ1

select the first important vector q1 ¼ q
ði1Þ
1 such that i1 ¼

maxi½SSR�i1 and SSR1 ¼ ½SSR�ði1Þ1 .

Step 2. k = k + 1,1 6 i 6 S + N and i 5 i1, . . . , i5 ik�1

aðiÞjk ¼
gTj ri

gTj gj

q
ðiÞ
k ¼ /i �

Xk�1

j¼1

aðiÞjk qj

gðiÞk ¼ ðqðiÞ1 ÞTJ
ðqðiÞ1 ÞTqðiÞ1

½SSR�ðiÞ ¼ ðgðiÞ1 Þ2ðqðiÞk ÞTqðiÞk
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select the kth important vector qk ¼ q
ðikÞ
k such that

ik ¼ maxi½SSR�ik and SSRk ¼ ½SSR�ðikÞ1 . The iterative proce-

dure can be terminated when

1�

Pk
i¼1

SSEi

ðy� �yÞTðy� �yÞ

is below the desired performance, where �y ¼ 1
K

PK
i¼1yi.

Step 3. The coefficients h can be directly computed

after getting the desired neurons (Upur ¼
½ri1 ri2 � � � riKs rSþNþ1�),

h ¼ Uþ
pury

where Ks is the number of the selected neurons and Uþ
pur

is the pseudoinverse of matrix Upur.

(III) Refine the initial neural network. The Gauss–

Newton method (Eq. (12)) is used here. Due to

the good initialization of the neural network, it

is much more efficient than the widely used

back-propagation procedure.
Four different types of input and output variables that are used

to train the neural network models

Types Inputs (x) Output (y)

(i) Re, Pr and Ec Nu

(ii) Pr, Tr, _m and _q a
(iii) Re, Pr, qw/qb and �cp=cp;b Nu

(iv) Pr, Tr, _m and Tw/Tb a
5. Result and discussion

In this study, the conventional method and three

different neural network modeling approaches (BPN,

RBFN and MRBFN) are applied. In the network

training, four different types of input and output are
Table 2

Comparison among three different neural networks and the correlation

(b) Type II; (c) Type III; and (d) Type IV

KPPG BPN (7 neurons) RBFN (10 ne

(a)

ADD (%) 3.50 1.55 6.0775

Bias (%) 3.04 0.08 0.2083

Max (%) 15.86 �12.07 32.9908

KPPG BPN (6 neurons) RBFN (10 ne

(b)

ADD (%) 3.50 1.72 3.7926

Bias (%) 3.04 0.61 0.1340

Max (%) 15.86 13.01 36.1438

KPPG BPN (6 neurons) RBFN (10 ne

(c)

ADD (%) 3.50 2.98 5.5539

Bias (%) 3.03 0.29 �0.1461

Max (%) 15.85 12.46 20.5924

KPPG BPN (6 nodes) RBFN (10 no

(d)

ADD (%) 3.50 1.19 2.6648

Bias (%) 3.04 0.05 0.0886

Max (%) 15.86 �24.81 13.3901
used [9] which are shown in Table 1, where Re, Pr,

Ec, Nu, a, Pr, Tr, _m; _q and
�cp
cp;b

are Reynolds number,

Prandtl number, Eckert number, Nusselt number, heat

transfer coefficient, reduced pressure, reduced tempera-

ture, mass flow, heat flux, the average heat capacity of

CO2 between the bulk (Tb) and the wall (Tw) temper-

ature, respectively.

The data from Olson and Allen [15] are randomly se-

lected from 250 points of 1115 experimental data points.

The validity range of the model is covered by the whole

experimental data. To have a systematical comparison,

three validation indices [9] are used

ðD%Þi ¼
xexpi � xcalci

xcalci

� 100

ADD% ¼ 1

NPT

XNPT

i¼1

j D%ji

Bias% ¼ 1

NPT

XNPT

i¼1

ðD%Þi; NPT ¼ 1115

ð14Þ
method under different input and output structures: (a) Type I;

urons) RBFN (25 neurons) MRBFN (10 neurons)

4.2964 1.8024

0.1552 �0.2180

32.6051 21.2581

urons) RBFN (20 neurons) MRBFN (10 neurons)

3.6797 0.7922

0.3426 0.0353

33.9764 7.0535

urons) RBFN (22 neurons) MRBFN (10 neurons)

2.5300 0.8026

0.0380 �0.0491

18.7107 5.5366

des) RBFN (25 nodes) MRBFN (10 nodes)

2.2084 0.5212

0.0158 �0.0172

16.1010 2.8552
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The comparison with the performances of the different

predicted models under the different input and output

structures are given in Table 2. KPPG is referred to as

the Krasnoshchekov, Protoppov, Pethukov, Gnielinski

conventional correlation [15]. The values of KPPG and

BPN are directly obtained from Scalabrin and Piazza

paper [9]. RBFNs with two different numbers of local

networks cannot perform as good as the BPN network

in terms of the evaluated indices even if RBFNs are bet-

ter than the conventional KPPG method. After the net-
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Fig. 3. Comparison of Nusselt number predicted by: (a) KPPG; (b)

MRBFN (10 neurons) to the measured value (Numeas) for all experim
work structure with the combination of the different

overlapped local networks, the proposed MRBFN sur-

passes the others inapproximating the heat transfer

model. The performance of MRBFN with only 10 neu-

rons is significantly better than that of RBFN.

According to the definition of the heat transfer

coefficient,

aðT w � T1Þ ¼ �k
oT
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� �
at wall

¼ _q ð15Þ
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the heat transfer coefficient, a, directly depends on the

temperature difference, Tw � T1, the heat conductivity

of CO2, k, and the temperature gradient, ðoT
or Þat wall. The

thermal conductivity (k) is a function of temperature

and pressure. Analogy to the analysis of the velocity gra-

dient, temperature gradient is mainly dominated by the

mass flux inside the tube. Therefore, among the four types

of input andoutput structures, Type IV gives themost ori-

ginal and direct information to the estimation of heat

transfer coefficient. It has the best-predicted performance.
Fig. 4. The selected radial base functions whose cross points are the d

each level are covered by the selected neurons: (a) _m and Tw/Tb; (b) P

and Tr.
In the input structure of Type II and IV, the only differ-

ence is that the heat flux, _q, is used in Type II and Tw/

Tb, in Type IV. Based on Eq. (15), the heat transfer coef-

ficient is directly related to the temperature difference

Tw � T1 and the heat flux, _q. Since the input structure

of Type II does not have anything to do with temperature

directly,Tw/Tb inType IV given as the temperature profile

can enhance a better prediction performance.

The input structures of Types I and III based on

some dimensionless variables (Re, Pr or Ec) instead of
istribution of the experimental data, and the shaded regions at

r and _m; (c) Pr and Tr; (d) Tw/Tb and Pr; (e) _m and Tr; (f) Tw/Tb
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the physical variables (like T and P) are not directly cor-

related to the heat transfer itself. By these input vari-

ables, the calculation of the thermo-physical properties

may create some uncertainty. Therefore, the prediction

performances are a bit worse than the other types of in-

put structures. However, qw/qb and cp=cp;b in type III

give more direct thermo-physical information, when

MRBFN is used. The prediction of Type III gives a bet-

ter performance than that of Type I.

In Fig. 3, the representative points for all experimen-

tal data, as the predicted Nusselt number, Nupred, based

on the input structure of Type III, versus the measured

Nusselt number Numeas are plotted. Also plotted are a

45� line representing exact agreement between the pre-

dictions and the experimental measurements and ±10%

deviation lines. It can be noticed that both the accuracy

and the precision of the predictions based on MRBFN

are remarkable when comparing the estimations of other

models. In this study, it demonstrates that a small effort

to optimize MRBFN in the training process can enhance

modeling accuracy.

Fig. 4 shows the input region (of Type IV) is divided

into several local region models whose predictions can

be combined to yield a prediction to the whole system.

For easy visualization, two variables selected from the

four input variables are plotted in two-dimensional space.

A total of six plots are needed. In each subplot, the level

axis represents different resolutions. The cross points (x)

in the plots represent data distribution. The whole region

on top has coarse resolution while the lower regions have

finer resolutions. The shaded areas are the selected neu-

rons that consist of corresponding data points. From

the set of figures, we can see the advantages of building

the local model of MRBFN at multiple resolutions. The

resolutions of the various local regions in the input space

are decided by the distributions of the training data. The

regions with finer resolutions that are used to approxi-

mate the quick change in the regions are also partially

overlappedwith the regions lower resolutionswhich cover

larger design space. This explains why MRBFN outper-

forms the other structures of the neural networks.
6. Conclusions

Due to the complexity of the physics involved in the

supercritical condition, the neural network modeling

framework based on the structure of the overlapped lo-

cal neurons applied in this paper is intended to improve

the prediction ability of the heat transfer coefficient for

supercritical CO2. While the conventional correlation

method is often sufficient for many heat transfer design

and optimization problems, the neural network model-

ing may be of interest when the system is operated with

an extremely non-linear and quick-change behavior in

the near supercritical region. The alterative neural net-
work design procedure, MRBFN, offers a systematical

framework for constructing and training network. For

practical use, the overlapped and localization property

of the proposed network brings the benefits of the fast

convergence and easy training. Compared with the other

two existing and popular networks (RBFN and BPN) in

this study, the proposed network which includes the fea-

tures of the overlapped local regions can achieves better

estimations. Although the supercritical CO2 is used in

this paper, a proposed model can be easily extended to

predict the heat transfer coefficient when any supercriti-

cal fluid is applied to a heat exchanger.
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